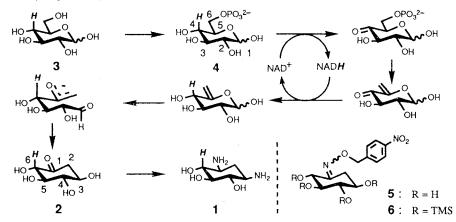
BIOCHEMICAL STUDIES ON 2-DEOXY-*SCYLLO*-INOSOSE, AN EARLY INTERMEDIATE IN THE BIOSYNTHESIS OF 2-DEOXYSTREPTAMINE

IV. A CLUE TO THE SIMILARITY OF 2-DEOXY-SCYLLO-INOSOSE SYNTHASE TO DEHYDROQUINATE SYNTHASE

Sir:


2-Deoxystreptamine (1), is a common aminocyclitol aglycon in a major group of clinically important aminoglycoside antibiotics. The crucial step in the biosynthesis of 1 is the formation of the precursor, 2-deoxy-scyllo-inosose (2), from D-glucose (3) via the intramolecular C-C bond formation between C-1 and C-6.^{1,2)} The transformation of 3 into 2 was proposed by us to involve a multi-step mechanism as shown in Scheme 1, the chemistry of which was suggested to be similar to the dehydroquinate synthase in the shikimate pathway,^{3,4)} and an enzyme responsible of the intramolecular cyclization was named "2-deoxy-scyllo-inosose synthase"5~8) AKHTAR then reported that the C-4 hydrogen of 3 was lost during the biosynthesis of 1 in the whole cells of Streptomyces fradiae (producing neomycins) and suggested involvement of oxidoreduction at C-4 of the substrate.^{7,8)} However, nothing has so far been clarified as to whether a single enzyme is involved or certain dissociable enzymes cooperate to form 2. This communication is an approach to this problem.

Recently, we established a cell-free system from *Streptomyces fradiae* IFO 13147 cells and successfully observed the production of 2 from D-glucose-

6-phosphate (4) in the presence of NAD.⁹⁾ Using this system, we studied the closer insight into the reaction mechanism of the aforementioned 2-deoxy-*scyllo*-inosose synthase, focusing on the fate of the C-4 hydrogen of 4.

A partially purified enzyme was prepared from the $(NH_4)_2SO_4$ saturation precipitate derived from the $10,000 \times g$ supernatant of the sonicate of *S. fradiae* cells.⁹⁾ After dialysis of the precipitate, the enzyme fraction (20 ml, 15 mg protein/ml) was chromatographed over a DEAE-Cellulofine A-800 column (i.d. 1 cm × 15 cm, buffer: 50 mM Tris-HCl, pH 7.5, containing 0.2 mM of Co²⁺ and Mg²⁺) with a linear gradient of the NaCl (0 to 0.4 M) concentration. The enzyme activity was assayed by the HPLC method described previously.⁹⁾ Appropriate enzyme fractions were collected and used for the isotope-tracer experiments.

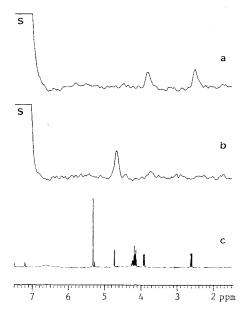
 $D-[4-^{2}H]-3$ (>95% enriched), which had been synthesized by a literature-cited procedure with slight modifications,¹⁰⁾ was chemically converted to $D-[4-^{2}H]-4$. The enzyme reaction was carried out at 37°C for 2 hours with a mixture of the enzyme fraction, 2 mm of NAD and 1 mm of either the labeled or the non-labeled substrate. D- $[6,6-^{2}H_{2}]-4$ was used as a positive reference.^{5,6)} Production of 2 was quantitated by the aforementioned HPLC analysis.9) The yields usually ranged around 10%. No endogenous or residual 2 was observed in the control experiment. Significant reduction ($\sim 40\%$) of the production of 2 was observed in the experiments with the D- $[4-^{2}H]$ -4 substrate compared with the non-labeled or D-[6,6-²H₂]-4 substrate (duplicate, data not shown). These observations may be suggestive of the primary kinetic isotope effect

 Scheme 1. The proposed mechanism of 2-deoxy-scyllo-inosose (2) synthase reaction in the biosynthesis of 2-deoxystreptamine (1).

Substrate –	D-Glucose-6-phosphate		D-[4- ² H]Glucose-6-phosphate		Chemically synthesized
	Run 1	Run 2	Run 1	Run 2	[6- ² H]-2-deoxy- scyllo-inosose
m/z 599	0	0	0	0	0
600	100	100	56.6	57.3	0
601	50.3	49.0	100	100	100
602	26.3	26.4	50.6	52.4	48.3
603	10.5	9.1	26.3	25.3	28.9

Table 1. Relative intensities of the mass spectra of 6 obtained from the enzyme reaction products and synthetic standard^a.

^a Mass spectral scanning was performed in triplicate for each case.


in the oxidoreduction during the 2-deoxy-scylloinosose synthase reaction.

The deuterium enrichment of the enzyme reaction product was determined by mass spectrometry. The *O*-(4-nitrobenzyl)oxime derivatives **5**, prepared from each enzyme reaction, were further separately silvated to the corresponding trimethylsilyl (TMS) ethers **6**. Each reaction mixture was diluted, and then subjected to GC-MS (Shimadzu-LKB 9020 DF spectrometer; OV-1, 12 m).

The relative signal intensities of the molecular ion region of 6 obtained from each enzyme reaction are shown in Table 1. The non-labeled control showed the M⁺ ion at m/z 600, but nothing at m/z 599, and only the M^+ ion (m/z 601) was observed in the spectrum of chemically synthesized [6-2H]-5 from $D-[4-^{2}H]-3$ as well.¹¹ In contrast, the enzyme reaction product from D-[4-2H]-4 showed the ions at m/z 600 and 601 (M⁺), suggesting the formation of both non-labeled and monodeuterated-2. Calculation allowed us to estimate the deuterium content in the product from the $D-[4-^{2}H]-4$ substrate to be 56%. Based upon the previously proposed reaction mechanism, the deuterium of D-[4-2H]-4 was expected to be incorporated into C-6 of 2, which has ultimately been proved as follows.

The location of deuterium in 5 obtained from the D-[4-²H]-4 substrate was determined unambiguously by ²H NMR spectra as shown in Fig. 1. The ²H chemical shifts were unequivocally assigned by comparison with the corresponding ¹H NMR spectrum of the non-labeled oxime 5. A positive control, $[2,2-^{2}H_{2}]$ -3 formed enzymatically from D-[6,6-²H_{2}]-4, clearly showed the signals at δ 2.54 and 3.81 to be due to the C-2 methylene group (¹H NMR, δ 2.58 and 3.89).^{5,6)} Most crucial is that the derivative 5 obtained from D-[4-²H]-4 showed a single deuterium signal at δ 4.65, which was attributed to the C-6 position (¹H NMR, δ 4.71). Thus, the deuterium of the D-[4-²H]-4 substrate Fig. 1. ²H NMR spectra (73.85 MHz, C_5H_5N) of 5 from enzyme reaction products and ¹H NMR spectrum (500 MHz, C_5D_5N) of the non-labeled standard.

a: (²H) the product from D-[6,6-²H₂]glucose-6phosphate; b: (²H) the product from D-[4-²H]glucose-6-phosphate; c: (¹H) non-labeled standard. "S" is the natural abundance signal of deuterium in the solvent.

appears to be incorporated into the C-6 position of 2.

Of significance is that the deuterium at the C-4 position of D- $[4-^2H]-4$ is retained in the product during the *in vitro* reaction of the NAD-assisted 2-deoxy-*scyllo*-inosose synthase reaction. Thus, the deuterium may be held in the vicinity of the substrate during the NAD-assisted oxidation and reduction. The observed enrichment ratio can be explained as follows. The non-deuterated **2** was probably derived from a minute amount of non-labeled **4** in the p- $[4-^2H]-4$ specimen. Accordingly, the low transformation of the substrate during the NAD-assisted oxidation and reduction. The observed enrichment ratio can be explained as follows. The non-deuterated **2** was probably derived from a minute amount of non-labeled **4** in the p- $[4-^2H]-4$ specimen. Accordingly, the low transformation of the substrate of the

mation efficiency (~10% chemical yield) and a possible kinetic isotope effect in the oxidoreduction at C-4 seem to effect preferential conversion of the non-labeled substrate, resulting in significant formation of the non-labeled **2**. The aforementioned AKHTAR's *in vivo* results can be explained similarly^{7,8)}

From the present *in vitro* experiments using a partially purified enzyme, it appears that the formation of 2 from 4 indeed requires NAD and the hydrogen at C-4 of the substrate is retained in the product, thereby suggesting that a series of reactions of 2-deoxy-scyllo-inosose formation may be performed by a single enzyme, "2-deoxy-scyllo-inosose synthase", with catalytic turn over of the NAD cofactor.

As to the mechanism of dehydroquinate synthase with respect to the 2-deoxy-scyllo-inosose synthase reaction, two features may be emphasized: 1) The C-5 hydrogen (at the β -position to the phosphate group, synonymous to the C-4 hydrogen of 4) of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate is retained in the cyclization reaction,¹²⁾ and 2) the NAD requirement is only catalytic and NAD is tightly bound to the enzyme.³⁾ While it is not clear that the 2-deoxy-scyllo-inosose synthase catalyzes only the oxidoreduction and/or cyclization reaction, as has been discussed for the dehydroquinate synthase,⁴⁾ the present results suggest close similarity of 2-deoxy-scyllo-inosose synthase, functioning in microbial "secondary metabolism", to dehydroquinate synthase in respect to the mechanism. The more datailed comparison must await closer analysis of the former enzyme.

Acknowledgments

This work was financially supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, and by a Research Grant from the Fujisawa Foundation. Gratitude is also due to Meiji Seika Kaisha Ltd., for large scale preparation of *S. fradiae* IFO 13147 cells.

Noriaki Yamauchi Katsumi Kakinuma*

Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan

(Received August 4, 1993)

References

- RINEHART, K. L., Jr. & R. M. STROSHANE: Biosynthesis of aminocyclitol antibiotics. J. Antibiotics 29: 319~353, 1976
- RINEHART, K. L., Jr.: Biosynthesis and mutasynthesis of aminocyclitol antibiotics. *In* Aminocyclitol Antibiotics, ACS Symposium Series No. 125. *Eds.*, K. L. RINEHART, Jr. & T. SUAMI, pp. 335~370, American Chemical Society, Washington D.C., 1980
- BENDER, S. L.; S. MEHDI & J. R. KNOWLES: Dehydroquinate synthase: The role of divalent metal cations and of nicotinamide adenine dinucleotide in catalysis. Biochemistry 28: 7555~7560, 1989
- WIDLANSKI, T.; S. L. BENDER & J. R. KNOWLES: Dehydroquinate synthase: A sheep in wolf's clothing? J. Am. Chem. Soc. 111: 2299 ~ 2300, 1989
- KAKINUMA, K.; Y. OGAWA, T. SASAKI, H. SETO & N. ŌTAKE: Stereochemistry of ribostamycin biosynthesis. An application of ²H NMR spectroscopy. J. Am. Chem. Soc. 103: 5614~5616, 1981
- KAKINUMA, K.; Y. OGAWA, T. SASAKI, H. SETO & N. ÖTAKE: Mechanism and stereochemistry of the biosynthesis of 2-deoxystreptamine and neosamine C. J. Antibiotics 42: 926~933, 1989
- GODA, S. K. & M. AKHTAR: The involvement of C-4 of D-glucose in the biosynthesis of the 2deoxystreptamine ring of neomycin. J. Chem. Soc. Chem. Commun. 1987: 12~14, 1987
- 8) GODA, S. K. & M. AKHTAR: Neomycin biosynthesis: The incorporation of D-6-deoxy-glucose derivatives and variously labelled glucose into the 2-deoxystreptamine ring. Postulated involvement of 2deoxyinosose synthase in the biosynthesis. J. Antibiotics 45: 984~994, 1992
- YAMAUCHI, N. & K. KAKINUMA: Confirmation of *in* vitro synthesis of 2-deoxy-scyllo-inosose, the earliest intermediate in the biosynthesis of 2-deoxystreptamine, using cell free preparations of Streptomyces fradiae. J. Antibiotics 45: 774 ~ 780, 1992
- GORIN, P. A.: Deuterium isotope effect on shifts of ¹³C nuclear magnetic resonance signal assignment studies. Can. J. Chem. 52: 458~461, 1974
- YAMAUCHI, N. & K. KAKINUMA: Biochemical studies on 2-deoxy-scyllo-inosose, an early intermediate in the biosynthesis of 2-deoxystreptamine. I. Chemical synthesis of 2-deoxy-scyllo-inosose and [2,2-²H₂]-2deoxy-scyllo-inosose. J. Antibiotics 45: 756~766, 1992
- ROTENBERG, S. L. & D. B. SPRINSON: Isotope effects in 3-dehydroquinate synthase and dehydratase. J. Biol. Chem. 253: 2210~2215, 1978